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Abstract

Two-dimensional laminar natural and Marangoni convection modes in a full-zone liquid bridge have been studied numerically using the
control volume method with SIMPLE algorithm. The maximum Reynolds number was described as follows: in the Marangoni convection
dominant regime,Remax = 0.0405BiMa (RemaxPr < 1) andRemax = 0.15{(BiMa)2/Pr}1/3 (RemaxPr > 1). In the natural convection
dominant regime,Remax = 2.61× 10−3 BiGr (RemaxPr < 1) andRemax = 0.0831(BiGr/Pr}1/2 (RemaxPr > 1). Graphical representations
are proposed for the purpose of determining the relative contributions of these two convection modes in the liquid bridge. The transition
between the natural and Marangoni convection dominant regimes occurs at around(Ma/Gr) = 10−1 (RemaxPr < 1) and(Ma4PrBi/Gr3) =
1 (RemaxPr > 1). It was shown that the transient behavior of natural convection under varying gravity fields depends on the physical
properties of the liquid. In order to reach a steady-state convection regime, a period of time is required after the stabilization of the gravity
field. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Bulk single crystals of semiconductors and oxides are
essential materials for most electronic and optoelectronic
devices. These bulk single crystalline materials are obtained
by a process called “crystal growth from melt”. Czochralski
(CZ), Vertical Bridgman (VB), and the floating-zone (FZ)
[1] are among the techniques used to grow bulk high qual-
ity crystals. Each of these techniques has some advantages
and disadvantages over the others. For instance, CZ and VB
allow the growth of large bulk crystals, but since the growth
is achieved in a container called “crucible”, the contamina-
tion from the crucible to grown crystals represents a major
setback for some materials (such as silicon with low oxygen
concentration). The growth in FZ, however, is achieved in
a containerless environment (i.e. without a crucible). The
problem of crucible contamination is thus no issue. This is
the main advantage of FZ over other bulk growth techniques.

In the floating-zone technique, the selected material in the
form of a rod is placed in a furnace. A section of the rod is
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then heated externally until it melts. The melted section is
suspended as a liquid bridge which has a free surface with its
environment. This melted zone is called the liquid floating
zone, or molten zone, or liquid bridge. When the rod moves
upward relative to the heater, the upper section of the rod
melts (since it gets hotter) and at the same time the lower
section of the liquid bridge freezes (since it gets cooler).
When this process continues, a section of the rod becomes
newly grown single crystal material. The melting section of
the rod is called feeding material, and the freezing section
is called grown crystal.

During the FZ growth process, large temperature gradi-
ents cause two types of well-known convective flows in the
molten zone: (i) the buoyancy-driven natural convection due
to density differences, and (ii) the Marangoni convection
due to the surface tension gradient. Relative importance of
these convective flows depends on the growth technique
considered. For instance, in CZ and VB the Marangoni
convection either does not exist or is very small compared
with the natural convection. In the floating-zone technique,
on the other hand, the Marangoni convection may become
more pronounced due to the relatively small volume of
the liquid bridge even under normal gravity conditions.
For instance, a typical size of molten zone used in silicon
growth experiments on Earth is 1 cm in height and 1 cm in
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Nomenclature

Asp aspect ratio (L/R)
Bi Biot number (hL/κ)
g gravitational acceleration (m/s2)
Gr gβ(T p − T m)L3/ν2

h heat transfer coefficient (J/(m2 s K))
L distance between upper and lower rods (m)
Ma Marangoni number

(|∂a/∂T ∗|(Tp − Tm)L/(νµ))
p dimensionless pressure (p∗/(ρν2/R2))
Pr Prandtl number (ν/α)
r dimensionless radial coordinate (r∗/R)
R radius of liquid bridge (m)
Re Reynolds number (u∗L/ν)
t dimensionless time (t∗/(R2/ν))
T dimensionless temperature

((T ∗ − Tm)/(Tp − Tm))
Ta ambient gas temperature (K)
Tm temperature of liquid/solid interface (K)
Tp peak temperature in ambient (K)
u dimensionless velocity in axial

direction (u∗R/ν)
v dimensionless velocity in radial

direction (v∗R/ν)
z dimensionless axial coordinate (z∗/R)

Greek letters
α thermal diffusivity (m2/s)
β thermal expansion coefficient (1/K)
κ thermal conductivity (J/(m s K))
µ viscosity (kg/(m s))
ν kinematic viscosity (m2/s)
ρ density (kg/m3)
σ surface tension (N/m)
φ dimensionless stream function (φ∗/(Zν))

Subscript
max maximum value

Superscript
∗ dimensional value

diameter [2]. For this reason, we have selected in our model
a float-zone configuration that has been used under normal
gravity conditions (i.e. about 1 g). In passing, we would
like to mention the significance of Marangoni convection
in microgravity experiments where the natural convection
is reduced to a minimum. In addition, in order to be able
to make the Marangoni convection more pronounced in the
model, we have deliberately selected certain values for the
operating conditions such as temperature gradients and the
length of free surface. The purpose of such selection is to be
able to study the effect of Marangoni convection effectively
under normal gravity conditions.

Fig. 1. Basic configuration and coordinate system.

Another way of reducing the intensity of the natural con-
vection in the liquid bridge under normal gravity conditions
is the use of a half-zone configuration in the model. In this
configuration the liquid bridge is assumed be suspended be-
tween an upper flat disk with higher temperature and a lower
flat disk with lower temperature. Such a configuration has
been widely used for a low temperature liquid [3,4] and for
high temperature melt [5] without crystal growth. However,
in an actual FZ experiment on Earth the hottest section is
located in the middle of the liquid zone [4] as shown in
Fig. 1. It would must therefore be better to model the whole
liquid zone (the so-called full-zone) for accurate predictions.
In such a full-zone configuration, the natural convection is
observed in the upper half above the hottest section. It was
reported that the interaction of natural and Marangoni con-
vective modes in the liquid zone have affected significantly
the flow patterns [6] and flow oscillations [7].

In an actual crystal growth experiment (FZ), the convec-
tive flows in the melt and the crystal/melt and melt/feed
interfaces are controlled by the rotation of the crucible
system. In order to determine the best rotation rate for
growing high quality crystals by FZ, a knowledge of the
flow velocity distribution in the liquid bridge is essential.
This requires a good understanding of relative contributions
of natural and Maragoni convections.

In pursuit this goal, one of the authors has previously
studied the natural and Marangoni convection modes in
a cylindrical liquid bridge using the order of magnitude
method [8]. He proposed an evaluating technique for de-
termining the dominant convection mode in the liquid. The
order-of-magnitude method is simple and useful for examin-
ing the effects of the Marangoni, Grashof and Prandtl num-
bers on the Reynolds number. However, the proportionality
constant cannot be determined by the order-of-magnitude
method. Numerical simulations or experimental observa-
tions are required to have accurate predictions for the effect
of these dimensionless numbers on the flow pattern and the
location of the maximum velocity in the liquid [8]. The
authors have previously studied the Marangoni convection



Y. Okano et al. / Chemical Engineering Journal 84 (2001) 315–320 317

in a liquid bridge with half-zone configuration under a
microgravity field by means of numerical simulation [9].
The Marangoni convection in a liquid bridge with full-zone
configuration has also been numerically studied, and the
Reynolds number, based on the maximum flow velocity in
the liquid due to the Marangoni convection has been corre-
lated with the Marangoni, Prandtl and Biot numbers [10].

In the present study, with the addition of the effect
of the Biot number, we study numerically the natural
and Marangoni convection modes in a liquid bridge with
full-zone configuration. Results are presented in the forms
of diagrams for the purpose of predicting the dominant con-
vection. Furthermore, the transient behavior of the convec-
tion modes in the liquid for various levels of microgravity
is discussed.

2. Model description and numerical procedure

Fig. 1 shows the basic configuration and coordinate sys-
tem used for the present model. A liquid bridge between two
stationary rods with the same radius,R, is heated from the
outside surface. The ambient gas temperature profile,Ta(z),
is described by the following equation:

Ta(z) = Tm + (Tp − Tm) exp

{
−25

(
z − L

2

)2
}

(1)

The model includes the following assumptions: (i) the fluid
is incompressible and Newtonian; (ii) the growth system is
axisymmetric and laminar; (iii) the solid/liquid interfaces,
which are atTm, are flat, and no crystal growth or melting
occurs; (iv) surface tension of the liquid is very high and the
liquid/gas interface is cylindrical; (v) the heat transfer be-
tween the liquid bridge and the ambient gas is only through
conduction and convection, and the radiative heat transfer
can be ignored. Under these assumptions, the dimensionless
governing equations are given as follows:
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The dimensionless variables are defined as:r = r∗/R, z =
z∗/R, t = t∗/(R2/v), u = u∗/(ν/R), v = v∗/(ν/R), T =

(T ∗ −Tm)/(Tp −Tm), p = p∗/(ρν2/R2), where ‘∗’ is used
to denote a dimensional quantity.

Boundary conditions are given as follows:
Along the solid/liquid interfaces (z = 0 and Asp)

u = v = 0, T = 0 (6)

Along the centerline (r = 0)

∂u

∂r
= v = 0,

∂T

∂r
= 0 (7)

Along the free surface (r = 1)
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= −

(
Ma

Asp

)
∂T

∂z
, v = 0

∂T

∂r
= Bi(Ta − T ) (8)

Eqs. (1)–(8) were discretized by the control volume method
on a staggered grid system, and solved by the SIMPLE al-
gorithm [11,12]. Aspect ratio, Asp, was fixed as 2.0 in this
study. The numerical domain was divided into 81(axial)×61
(radial) control volumes. In order to obtain accurate results,
a nonuniform grid arrangement with a small grid spacing
near the free surface was used [10]. For the steady state so-
lution, the second-order central and the first-order upwind
mixed hybrid scheme were applied to the inertial terms in the
governing equations. For the transient solution, the QUICK
scheme [13] was used.

3. Results and discussion

3.1. Effect of natural convection

Results of numerical simulations for the stream function
and temperature are depicted in Fig. 2a and b for a reduced
(10−4 g) and normal gravity (1 g) levels. Fig. 2 describes
the effect of gravity on the stream function (left half) and
isotherms (right half) at the steady state whenPr = Bi =
1.0, Ma = 4 × 103 and the radius of the liquid bridge is
3.0 mm. Under the reduced gravity field (a), the size of the
upper and lower flow cells, both flowing from the center
of the free surface to their respective rods along the free
surface, are almost identical. On the other hand, under the
normal gravity field (b), the upper cell is enhanced by the
natural convection while the lower cell was suppressed. The
effect of change in gravity levels is obvious. In Fig. 3, the
Reynolds number based on the maximum velocity is de-
picted. In the figure the solid lines represent the following
equations:

Remax = 0.0405BiMa (RemaxPr < 1) (9)

Remax = 0.15

{
(BiMa)2

Pr

}1/3

(RemaxPr < 1) (10)
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Fig. 2. Effect of gravity on stream function (left half) and isotherms (right half) whenPr = Bi = 1, Ma = 4 × 103 and radius of the liquid bridge is
3.0 mm. (a) Under reduced gravity, 10−4 g, Gr = 1.6, and (b) under normal gravity, 1 g,Gr = 1.6 × 104.

Fig. 3. Effect of natural convection on the maximum Reynolds number.

Eqs. (9) and (10) were previously obtained by the correla-
tion of numerical results on the Marangoni convection alone
in the liquid bridge with full-zone configuration [10]. As
shown in Fig. 3, natural convection enhances the maximum
Reynolds number, and the curves deviate from Eqs. (9) and
(10) when the Grashof number is increased.

Fig. 4. Diagrams for the estimation of dominant convection: (a) forRemaxPr < 1, and (b) forRemaxPr > 1.

Fig. 5. Transient behavior with varying gravity, from 1 to 10−4 g.

3.2. Graphs for evaluation of the dominant convection

Results shown in Fig. 3 are rearranged in Fig. 4, in which
(a) and (b) correspond the cases whereRemaxPr < 1 and
RemaxPr > 1, respectively. In this graphical representation,
when the Marangoni convection is dominant in the liquid,
the graphs exhibit a linear relationship with a slope of unity.
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Fig. 6. Flow (left half) and temperature (right half) fields whenPr = Bi = 1 during gravity change. (a) 1.6; (b) 2.5 and (c) 10 s.

This corresponds to the following relationships:

Remax ∝ BiMa (RemaxPr < 1) (11)

Remax ∝
{

(BiMa)2

Pr

}1/3

(RemaxPr > 1) (12)

On the other hand, the absisca is shown constant when natu-
ral convection is dominant in the liquid. This translates into
the following relationships:

Remax = 2.61× 10−3 BiGr (RemaxPr < 1) (13)

Remax = 0.0831(BiGr/Pr)1/2 (RemaxPr > 1) (14)

Thus, by representing the results in the format suggested in
Fig. 4, the dominant convection in the liquid bridge with
full-zone configuration can readily be determined. However,
the proportionality constants in Eqs. (9), (10), (13) and (14)
must be affected by the shapes of liquid/gas and solid/liquid
interfaces. As the authors have previously reported, swelling
of the interface leads to a faster flow velocity [14]. The effect
of the interface shapes should be examined in future works.

3.3. Transient behavior of convection under
varying gravitational field

The interest of studying the transient behavior of the
convective flow in the liquid bridge in FZ systems from
the fact that there have been a number of crystal growth
experiments using some inexpensive microgravity environ-
ments such as drop towers and parabolic flights. One of
the goals of crystal growth experiments in these environ-
ments is the investigation of Marangoni convection. In such
experiments, the gravity level changes from 1 g to a mi-
crogravity in a very short period of time. It is important to
examine the effect of such a sudden change in the gravity
level on the flow modes in FZ. Fig. 5 presents the result
of our numerical simulation for the transient behaviors of
the convection modes in the liquid bridge with full-zone
configuration. In the figure, a broken line represents the
variation of gravity level. The gravitational constant was

changed from 1 to 10−4 g in 1 s. A thinner line describes the
variation of the maximum Reynolds number normalized by
the value atGr = 0 whenPr = 10−2 andBi = 10−4, which
corresponds to a semiconductor melt. A bold line shows the
case ofPr = Bi = 1, which corresponds to an oxide melt.
The maximum Reynolds number decreases as the gravity
decreases because of suppression of the natural convection,
and continues to decrease even the gravitational level stays at
10−4 g. In the case of liquid withPr = 10−2 andBi = 10−4,
the maximum Reynolds number decreases monotonously.
On the other hand, in the case of a liquid withPr = Bi = 1,
the maximum Reynolds number reaches a local maximum
at about 2 s, and then decreases again. Fig. 6 shows flow and
temperature fields whenPr = Bi = 1. Fig. 6a–c describe the
stream functions and isotherms at the corresponding times
that are marked in Fig. 5. The “�” symbols in Fig. 6 rep-
resent the position of the maximum velocity. As shown in
Fig. 6, the position of the maximum velocity moves from the
upper to the lower cell as natural convection is suppressed.

4. Conclusion

Natural and Marangoni convection modes in a liquid
bridge with full-zone configuration were numerically stud-
ied, and the following results were obtained:

1. The natural convection in the liquid zone was enhanced
in the upper section of the zone while it was suppressed
in the lower section of the zone.

2. Results of numerical simulation were presented in graph-
ical forms, and new graphs were proposed for purpose
of evaluating the dominant convection in the liquid, in-
cluding the Biot number. These graphs provide essential
information for determining experimental conditions in
the liquid during crystal growth by the floating zone, and
also for investigating the Marangoni convection under
normal gravity conditions.

3. Transient behavior of natural convection under varying
gravity fields depends on the physical properties of the
liquid. Even the gravity level is kept at a constant micro-
gravity value, the level of convection in the liquid still
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varies, and it takes a period of time before the system
reaches a steady state.
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